
Page 1 of 4

Monaco for Programmers

Introduc2on

Monaco is a program whose primary purpose is to answer probability related problems. It is
a command line program – any alterna=ve use is just to construct that command line.

For example, if asking “what is the distribu=on summing the values of three standard six-sided
dice?”, a run that answers that ques=on is:

monaco -exact -histogram 3d6

where monaco is whatever you use to run the program. 3d6 is an expression, wriJen in a
language specific to Monaco, but with many parts borrowed from familiar sources. This
expression is the main expression; other expressions are beyond the scope of this note. An
expression can be evaluated to a value of its type – for the main expression that is always an
integer. Most expressions are random, here 3d6 is the sum of three standard six-sided dice.

Before the expression there are op)ons. Here, -exact is for an exact answer to the ques=on
and -histogram outputs a distribu=on of the possible results, which is:

 3 - 1 ~ 0.00462963 = 1/216
 4 - 3 ~ 0.0138889 = 1/72
 5 - 6 ~ 0.0277778 = 1/36
 6 - 10 ~ 0.0462963 = 5/108
 7 - 15 ~ 0.0694444 = 5/72
 8 - 21 ~ 0.0972222 = 7/72
 9 - 25 ~ 0.115741 = 25/216
10 - 27 ~ 0.125 = 1/8
11 - 27 ~ 0.125 = 1/8
12 - 25 ~ 0.115741 = 25/216
13 - 21 ~ 0.0972222 = 7/72
14 - 15 ~ 0.0694444 = 5/72
15 - 10 ~ 0.0462963 = 5/108
16 - 6 ~ 0.0277778 = 1/36
17 - 3 ~ 0.0138889 = 1/72
18 - 1 ~ 0.00462963 = 1/216

Other forms of output include forward and backward cumula=ve histograms using
-cumulative and -rcumulative instead of or as well as -histogram.

The alterna=ve to an exact result is an approximate result. For example, also introducing the
addi=onal op=on -percent – which can also be used in exact mode – using:

monaco -histogram -percent 3d6 10000000

the expression is evaluated ten million =mes, and produces the output:

 3 - 46364 ~ 0.46364% [0.459448%, 0.46787%]
 4 - 138809 ~ 1.38809% [1.38086%, 1.39536%]
 5 - 276908 ~ 2.76908% [2.75893%, 2.77927%]
 6 - 462777 ~ 4.62777% [4.61477%, 4.64081%]
 7 - 694454 ~ 6.94454% [6.9288%, 6.96031%]

Page 2 of 4

 8 - 972865 ~ 9.72865% [9.7103%, 9.74703%]
 9 - 1157432 ~ 11.5743% [11.5545%, 11.5942%]
10 - 1249310 ~ 12.4931% [12.4726%, 12.5136%]
11 - 1250542 ~ 12.5054% [12.4849%, 12.5259%]
12 - 1159223 ~ 11.5922% [11.5724%, 11.6121%]
13 - 970829 ~ 9.70829% [9.68996%, 9.72666%]
14 - 695689 ~ 6.95689% [6.94114%, 6.97268%]
15 - 462863 ~ 4.62863% [4.61563%, 4.64167%]
16 - 276656 ~ 2.76656% [2.75641%, 2.77674%]
17 - 138966 ~ 1.38966% [1.38242%, 1.39693%]
18 - 46313 ~ 0.46313% [0.458941%, 0.467357%]

The figures in [] are a 95% confidence interval, sugges=ng how accurate each probability is.

For approximate results, that is always the output for that run, because the random number
generator starts at a fixed point. For a different run each =me add the op=on -new.

The Structure of an Expression

The expression is constructed from terms, which are anything that can be evaluated. Each
term has a type: integer, list (of integers), real number or string, but only the first two types
are considered here. Terms can be combined using operators and func)ons. Terms can be
sequenced separated by semicolons, the value of such a sequence is the value of its last term.

Operators combine terms of the same type, producing a term of the same type. For example,
the expression 3d6>=2d10 contains the terms 3d6 and 2d10 combined using the operator >=.
Logical values are as the C programming language – zero is false, anything else is true, but a
true result is always one. The operators are modelled a]er those in standard C/C++, with some
changes (logical operators are not doubled) and some addi=ons (including ~ @ # ?< ?> and ??).

The ques=on to be answered here is how o]en 3d6 is greater than or equal to 2d10. We also
replace -histogram by -probability and -statistics and the exact output is:

Number of results = 21600
Number of false results = 10800
Number of true results = 10800
Probability = 0.5 = 1/2

A func=on has a name followed by comma separated arguments in parentheses (). If the
func=on has no arguments the parentheses can be omiJed. Otherwise, each argument has a
type. Argument types can be different from each other and from that of the func=on, i.e. the
type of its value. When an expression is parsed it is always known which type of term is
expected. There is an excep=on to this rule, the assignment of a variable, considered below.

For example, product(3d6) is a valid term, as product is a func=on with a list argument and
an integer value. This 3d6 is not the sum of three dice but is a list of three dice values. Monaco
can tell the difference between those because it always knows which type of term is expected.

Here we assume that we are interested in the average value of that product, and we use the
op=on -statistics as well as -exact to produce the output:

Number of results = 216
Mean = 42.875 = 343/8

Page 3 of 4

Standard deviation = 40.6262
Minimum result = 1
Maximum result = 216

Randomness can also be introduced by func=ons. For example, the func=on shuffle creates
a random reordering of a list, thus shuffle{2,3,5,7} has 24 possible values. This term uses
that a single braced list argument that could be used as ({...}) can be replaced by {...} for
any ...

Lists

Lists are of integers. All lists have a fixed length; for example, the list 3d6 has length 3. Three
other examples of lists with length 3 are {d6,2d6+1,3d6+3}, 4[3], which is equivalent to
{4,4,4}, and sequence3, which is equivalent to {0,1,2}. List lengths can be omiJed when they
can be deduced; for example, sequence3+4 can be used instead of sequence3+4[3].

Variables and Assignment

There are ten integer variables, called r0 to r9, and ten list variables, called v0 to v9, that can
be used in an expression.

We assign to a variable with, for example, v0:=3d6, or a modifying assignment, for example
v0+=3d6. List variables have a constant length, so, for example, once the length of v0 is set it
cannot be changed. Either of those assignments sets the length of v0 to 3 if not already set.

Assignments are terms; the value of an assignment term is the new value of the assigned to
variable. Assignments can be used in a semicolon separated term sequence, even if a different
term type is expected. However, the last term in such a sequence should have the expected
type. For example, v0:=3d6;sum(v0*v0) is a valid integer term. (Like other list operators, *
works element by element, and sum is similar to product.)

There are also some derived variables. For example, e01 is element r1 of the list v0. It can be
used to extract informa=on from v0, or to set individual elements of v0 as r1 is varied.

Before each evalua=on of the expression, integer variables are all set to zero and list variables
are all set to a list with the appropriate number of all zero elements.

Constants

There are also ten integer constants, c0 to c9, and ten list constants, u0 to u9. These can only
be set once, at the start of the expression and followed by one or more semicolon separated
terms. Also, the constants s0 to s9 are the lengths of the variable lists v0 to v9; these can be
set to define the list length. The lengths of u0 to u9 are k0 to k9, but these cannot be set. In
addi=on, for example, the variable i01 is element r1 of u0; this cannot be modified.

Branching and Loops

Branches and loops are implemented within the expression, not outside it.

Branching can be by using operators, as in C/C++. The ternary ?: operator evaluates either its
second or third operand according to the value of its first operand (true or false). Also, the
logical and & and inclusive or | operators only evaluate their second argument if needed.

Page 4 of 4

One form of loop uses the @ (accumula=on) operator. This evaluates its first operand, and then
evaluates its second operand that many =mes, summing them. For example, 3@d6 is the same
as 3d6. However, for d6@d6, the number of dice rolled is variable. That means that term cannot
be used in exact mode. (However, that case can be analysed exactly because the randomness
is bounded. The best way uses the randomness pool, but is beyond the scope of this note.)

Other loops use func=ons. There are many loop func=ons, both looping in different ways and
providing cases such as summing or taking the maximum over a loop to simplify the
expression. However, this note just presents two loops to show the basic principles.

The first example loop rolls a d6 un=l a 6 is rolled, accumula=ng the results without the final
6, using the term while(r0:=d6;r0!=6,r1+=r0). The value of this term is the last value of
its second argument. This is the required sum if that is the complete expression, using that r1
is ini=alised to zero. This example of this loop cannot be used in exact mode.

The second example loop is through the list v0, with length s0. We assume there is also a
constant list u0 with at least the same length. We replace each element of v0 by its square or
cube if the corresponding element of u0 is true or false. As s0 and u0 are not ini=alised here,
this is only a term, not a complete expression: rloop1(s0,e01*=(i01?e01:e01*e01)),
which loops r1 from 0, inclusive, to s0, exclusive. The term’s value is again the final value of
the second argument, but that is not very useful here (nor is the whole term).

Faster Exact Results

Rolling nine standard dice the number of different values rolled is count_diff(9d6). On my
computer (as for all =mes here) that takes just under 2 seconds. We can greatly speed that up
using count_diff(sorted9d6). The list term sorted9d6 assumes that which die is which has
no effect, and so generates just one representa=ve of each significantly different set of dice,
the one where they are sorted in non-descending order. It handles that not all sets of dice are
equally likely. The =me is reduced to about a millisecond. Increasing 9 dice to 12 dice the =me
is reduced from about 6 minutes to 2.5 milliseconds, which is by five orders of magnitude.

There are more terms like sorted9d6 for other cases, including drawing cards as well as rolling
dice, and for other forms of symmetry than the “all dice are interchangeable” used here. They
rely on the user to iden=fy which term is appropriate, but the gains can make that worthwhile.

References

Monaco’s runs can include many more instances of things men=oned in this note, including
op=ons, named en==es, random terms, opera=ons and func=ons. For an introduc=on to some
of them there are three tutorial documents, but for a full reference to all features the
extensive full documenta=on is required; see its Sec=on 1.2.2 for a star=ng point. The program
itself also provides its own documenta=on; as a star=ng point for that use monaco -help.

Contact Informa2on

Monaco was created by Christopher Dearlove, christopher.dearlove@gmail.com. Further
informa=on is available at http://www.mnemosyne.uk/monaco.

